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Abstract. Over the last few years, multivariate bias correction methods have been developed to adjust spatial and/or inter-

variable dependence properties of climate simulations. Most of them do not correct – and sometimes even degrade – the

associated temporal features. Here, we propose a multivariate method to adjust the spatial and/or inter-variable properties while

also accounting for the temporal dependence, such as autocorrelations. Our method consists in an extension of a previously

developed approach that relies on an analogue-based method applied to the ranks of the time series to be corrected, rather5

than applied to their “raw” values. Several configurations are tested and compared on daily temperature and precipitation

simulations over Europe from one Earth System Model. Those differ by the conditioning information used to compute the

analogues, and can include multiple variables at each given time, a univariate variable lagged over several time steps, or both

– multiple variables lagged over time steps. Compared to the initial approach, results of the multivariate corrections show that,

while the spatial and inter-variable correlations are still satisfactorily corrected even when increasing the dimension of the10

conditioning, the temporal autocorrelations are improved with some of the tested configurations of this extension. A major

result is also that the choice of the information to condition the analogues is key since it partially drives the capability of the

proposed method to reconstruct proper multivariate dependencies.
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1 Introduction

Climate model simulations are and will remain the main source of numerical projections to understand and anticipate climate15

change consequences. Those projections are performed under various greenhouse gazes emission scenarios, prescribed for

instance within the 5th international “Coupled Models Intercomparison Project” (CMIP5, IPCC, 2013) or the on-going CMIP6

(Eyring et al., 2016), and are widely used by the scientific community investigating climate change and the manifold impacts

of the upcoming climate changes. Indeed, climate changes have been anticipated to affect multiple domains : hydrology and

water resources (e.g., Gleick, 1989; Christensen et al., 2004; Piao et al., 2010), agronomy and crops (e.g., Ciais et al., 2005;20

Ben-Ari et al., 2018), ecology and biodiversity (e.g., Brown et al., 2011; Bellard et al., 2012), economy (e.g., OCDE, 2015; Tol,

2018) or human migrations (e.g., Defrance et al., 2017) are examples of domains where expected impacts of climate evolution

can be high and therefore quite problematic for society.

To get robust impact estimations, the climate projections have thus to be as precise and informative as possible. However,

even simulations of the current climate often present statistical biases: their mean, variance, or more generally their distribu-25

tions, can more or less largely differ from observational reference datasets (see, e.g., Christensen et al., 2008; Teutschbein and

Seibert, 2012; François et al., 2020, among many other studies). This also means that climate projections for future periods

are also expected to have biases, potentially similar. That is why many impact studies, for current or future climate, have to

rely on “adjusted” climate simulations, obtained via bias correction (BC) methods. Over the last decades, many statistical and

data-science BC techniques have been progressively devised for this specific purpose. The objective of such techniques is to30

transform (i.e., “correct”, or “adjust”) the climate model simulations such that, for a calibration time period, the obtained cor-

rections are equivalent to a reference dataset in terms of one or several targeted statistical features (e.g., means, variances, or

distributions). Simple methods can be used in case the target is only the mean (as the so-called “Delta” or “Anomaly” methods,

e.g. , Xu1999) or the variance (e.g., “simple scaling” Eden et al., 2012; Schmidli et al., 2006). Nevertheless, in general, the

most employed methods are based on the “quantile-mapping” approach (e.g. Déqué, 2007; Gudmundsson et al., 2012) and35

its many variants (e.g. Kallache et al., 2011; Vrac et al., 2012; Cannon et al., 2015), whose the target is the whole univariate

distribution (i.e., not only the mean and variance but all moments of higher order, as well as any percentile) of a given climate

variable.

However, if many statistical aspects can be adjusted with such methods, all are only univariate, i.e., related to only one

physical variable at a single location. If multiple variables and/or at multiple locations have to be corrected, the independent40

applications of several 1d-BC methods will not modify the intrinsic dependence structure of the simulations to be corrected

(Vrac, 2018). Therefore, if the climate model simulations have biases in their inter-variable and/or inter-site dependencies

(e.g., in their correlations), most of the quantile-mapping and univariate BC techniques will not correct these features and will

basically preserve their biases. This has obviously consequences for the impact models requiring multiple climate variables as

input: if the physical relationships (i.e., the statistical dependencies) of those input variables are not realistic enough, the biases45

in the multivariate situations can quickly propagate to the simulated impacts themselves, even if the simulations are adjusted

by 1d-BC methods, (e.g. Boé et al., 2007). More generally in climate sciences, the accurate modelling of dependencies is a
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key aspect for proper assessments and projections of compound events and their associated risks (e.g. Leonard et al., 2014;

Zscheischler et al., 2018; Bevacqua et al., 2019).

Consequently, some multivariate bias correction (MBC) methods have been recently designed to tackle the issues of the50

biases in multivariate dependencies. The goal is basically the same as for univariate corrections: find a transformation that

makes climate model simulations have the same targeted statistical features as a reference in the calibration period. In this

case, the target statistical features does not only include univariate features but also multivariate statistical features such as

correlations or the empirical copula. The various MBCs developed so far can be categorized in three main families (Vrac,

2018; Robin et al., 2019; François et al., 2020):55

– the “marginal/dependence” approaches, correcting separately univariate distributions and dependences before joining

them to provide multivariate corrections (e.g. Vrac, 2018; Cannon, 2017);

– the “conditional successive” methods, adjusting one variable at a time but conditionally on the previously corrected

variables to ensure proper multidimensional relationships (e.g. Piani and Haerter, 2012; Dekens et al., 2017);

– the “all-in-one” models, which do not separate the multivariate distribution, neither in marginal/dependence, nor in con-60

ditional distributions, but directly transform one multidimensional distribution into another multidimensional distribution

(e.g. Robin et al., 2019).

A first intercomparison and critical review of MBC methods has been carried out by François et al. (2020). One major

finding was that, although most of the MBC techniques (depending on their hypotheses and configurations) are more or less

able to provide adjusted multidimensional properties, none of them explicitly account for temporal dependence properties. This65

implies that, although multivariate properties can be correctly adjusted (and sometimes, spatial properties as well, depending

on the method), the temporal structure of the data generated by MBC methods is different from that of the model data to be

corrected but not necessarily closer to that of the reference data. Therefore, there is a need to improve temporal properties

resulting from MBC outputs. Of course, this specific need should not be filled at the expense of the other (marginal, inter-

variable or inter-site) properties.70

In the present study, we rely on a recently developed MBC method named R2D2 to propose an extension allowing us to

improve the autocorrelation of the multivariate adjusted data. This R2D2 extension takes advantage of an analogue-based

technique to reconstruct the multidimensional dependence conditionally on temporal sequences of ranks.

The rest of this article is organized as follows: Section 2 describes the reference and model data on which the proposed

R2D2 extension is evaluated. Section 3 provides a short reminder about the initial R2D2 approach, the detailed description of75

its new extension, as well as the experimental design set up for evaluation. Then, results are given and analysed in Section

4, under the underlying focus-question “can the suggested method improve the temporal dependencies without degrading the

other (marginal, spatial and inter-variable) properties?”. Finally, the main findings are summarised and discussed in Section 5.
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2 Reference and model data

To perform tests and analyses of the proposed correction method, we will rely on daily temperature at 2 meters (T2) and80

precipitation (PR) from one run of a global climate model to be corrected on one hand, and from an observation-based reference

dataset on the other hand.

The latter corresponds to WFDEI data, which is the WATCH Forcing Data (WFD; Weedon et al., 2011) methodology applied

to ERA-Interim data, for the period from 1 January 1979 to 31 December 2016 on a 0.5o x 0.5o spatial grid (Weedon et al.,

2014) over the land-only European region [-10oE, 30oE]x[30oN, 70oN], corresponding to 4167 gridpoints.85

The climate model data to be corrected are extracted – for the same region – from simulations performed by the IPSL-

CM5A-MR Earth system model (Marti et al., 2010; Dufresne et al., 2013). A historical run is used for 1979-2005. This is

concatenated with a run under RCP8.5 scenario for 2006-2016, hence providing a 1979-2016 time period. Those simulations

have an initial 1.25o x 2.5o spatial resolution. To allow comparisons and applications of BC methods, they are then regridded to

the WFDEI spatial resolution with a bi-cubic interpolation for temperature, and a conservative interpolation for precipitation.90

Note that only one climate model is used for application and evaluation purposes in the present study. Of course, other

models will have other biases that must be corrected differently. However, our goal is not to test the proposed approach on

many climate models, but rather to establish a proof-of-concept of the R2D2 extensions on an illustrative simulations run. We

hypothesise that the main general findings obtained on this single model will still be valid for other models and simulations.

3 Methods and design of experiments95

3.1 A short reminder about the R2D2 method

The proposed methodology relies on – or can be seen as an extension of – the “Rank Resampling for Distributions and

Dependences” (R2D2) bias correction method (Vrac, 2018). R2D2 consists in 2 steps: first, a univariate BC is performed to

adjust the marginal distributions; and then, the empirical copula function (i.e., the dependence structure between the variables of

interest, rid of their marginal distribution) is adjusted. Thus, R2D2 belongs to the “marginal/dependence” family of multivariate100

bias corrections (see François et al., 2020, for a description of the other families: ““successive conditional” and “all-in-one”)

For the first step, any 1d-BC method can be employed. In Vrac (2018) and in the following of the present study, the “Cumu-

lative Distribution Function - transform” (CDF-t) approach (e.g., Vrac et al., 2012) is used to adjust the marginal properties.

For the second step, R2D2 uses a “conditioning dimension" (called “reference variable” in Vrac, 2018) from the 1d-BC

results. This univariate 1d-BC time series – and more precisely its ranks – serves as a conditioning to find, within the other 1d-105

BC variables, the values that have the same ranks association as those in the training reference dataset (details and examples

on R2D2 can be found in Vrac, 2018). Hence, this method relies on a univariate conditioning dimension to generate rank

associations, in the same way as an analogue technique (initially developed by Lorenz, 1969) relies on its predictors to generate

values. By doing so, this MBC approach allows to reproduce observed multivariate (spatial and multi-variable) dependence

structures, while preserving some temporal properties of the initial simulations via the conditioning dimension.110
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However, if the temporal features of the conditioning dimension (i.e., one physical variable at one given location) is preserved

by construction, this is not necessarily the case for the other variables (i.e., different physical variables and/or spatial locations)

and even not the case at all for variables having a weak rank correlations with the conditioning dimension. Therefore, taking

advantage of the analogues-based philosophy of R2D2, several extensions are here proposed to improve the temporal properties

of the corrections brought by the initial R2D2.115

3.2 Accounting for temporal structures via multivariate ranks conditioning

The main idea of the proposed extensions consists in seeing the R2D2 approach as an analogue-based method. Indeed, in

previous sub-section 3.1, it is clear that the resampling of the multivariate ranks is conditional to a single rank value of the

conditioning dimension. In analogues techniques used in the climate literature (e.g., Zorita and von Storch, 1999; Yiou, 2014;

Jézéquel et al., 2018, among others), the conditioning (i.e., predictor) variable can be multivariate. In our case, since the120

purpose of R2D2 is to correct the dependence structure, we want the notion of analogue situations to only account for the

dependence structure and not for the marginal distribution. Hence, the distance between two situations is not computed based

on the raw values of the conditioning dimensions but based on their ranks. The best analogue is thus defined as the situation

(e.g., day) having the association of ranks the closest to that of the conditioning dimension in terms of Euclidean distance.

Here, an extension of R2D2 is proposed and allows different configurations, all relying on R2D2 applied conditionally on a125

multidimensional conditioning dimension:

– R2D2 conditional on a multivariate information at a given time t: The conditioning dimensions in R2D2 can be chosen

freely. They can belong to the set of variables to be corrected, provided as exogenous variables or be a combination

of both. There is no restriction neither on the spatial scales of the conditioning dimensions. For instance, as a bivariate

conditioning dimension, one could combine a daily NAO index, to provide large-scale information, with the temperature130

at one gridpoint as a source of small-scale information. Other choices could be the temperature at two given locations,

or the temperature and the precipitation at one location, etc.

– R2D2 conditional on a rank sequence at times (t−n,t−n+ 1, . . . , t) of a univariate conditioning dimension: The idea

here is about the same as in the previous suggestion but instead of conditioning the ranks resampling on a multivariate

conditioning dimension at time t, it is on a univariate one (e.g., temperature at a given location, or NAO index) but at135

several (e.g., n) lagged time steps (t−n,t−n+ 1, . . . , t).

– R2D2 conditional on a ranks sequence of a multivariate conditioning dimension: This is a logical combination of the two

previous configurations to condition R2D2 on an information characterising a temporal sequence of multiple variables.

Whatever the configuration, the choice of the conditioning dimension is however not trivial, as it conditions the temporal

properties of the model that will be conserved after correction. In the case of a configuration accounting for the rank sequence,140

the length of the sequence to search the analogues has to be chosen. This length will be referred to as “Block-A” (for “Block-

analogue”) hereafter. Moreover, in order to avoid discontinuities in the reconstructed final sequence of ranks (and therefore
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in the final corrected time series), only a sub-sequence (i.e., shorter than Block-A) of the best analogue sequence is kept. The

length of this sub-sequence has also to be chosen and is referred to “Block-K” (for “Block-kept”) hereafter. Preliminary tests

(not shown) indicate that Block-A=9 and Block-K=7 are reasonable choices and that the results are only weakly influenced by145

a slight change of those values.

In the following, 20 different R2D2 configurations are applied and compared to the reference WFDEI dataset, the plain

simulations and the univariate BC results obtained from CDF-t. Those 20 configurations and their notation are given in table

1. For the versions including 5 gridpoints in the conditioning, the locations are chosen to characterise 5 cities: Paris, Madrid,

Stockholm, Rome and Warsaw, spread out over the region. In the same manner – but more automatically – the N gridpoints (N150

= 100 or 400) in the other versions are chosen to cover uniformly the region of interest.

Note that the configuration using a conditioning with only one physical variable at a single location without accounting for

lags (i.e., R.1.1.0) exactly corresponds to the initial R2D2 method.

Moreover, in practice, the R2D2 configurations with 400 gridpoints or with 4 167 (i.e., all) gridpoints for the conditioning

dimension provided results equivalent to those from the same configurations but with only 100 gridpoints (not shown). This155

emphasizes a preliminary result: taking a large number of spatial information is not necessarily needed once a sufficient

information is provided. Hence, in the following, the experiments R.400.1.0, R.400.2.0, R.400.1.1 and R.400.2.1 will not

be presented, neither the experiments R.4167.1.0, R.4167.2.0, R.4167.1.1 and R.4167.2.1, as they provide results similar to

R.100.1.0, R.100.2.0, R.100.1.1 and R.100.2.1, respectively.

3.3 Experimental design of the correction schemes160

The different configurations of the R2D2 extensions, as well as the CDF-t univariate BC (referred to as BC1D in the following),

are applied and evaluated according to the following 2-fold cross-validation approach: First, the methods are calibrated over

the 1979-1997 period and applied to correct the 1998-2016 climate projections for evaluation. Then, they are also applied the

other way around, i.e., calibrated on 1998-2016 and applied for evaluation on 1979-1997. Finally, the two 19-year evaluation

periods are gathered to dispose of the whole 38-year time period for evaluation.165

Every method is applied on daily values but on a monthly basis, i.e., for each month separately that are joined afterwards.

However, evaluations are performed on a seasonal basis – i.e., for each season (DJF, MAM, JJA, SON) separately – to reduce

the number of figures and to group similar behaviours.

4 Results

In this section, we examine the effects of R2D2 on the temporal, spatial, inter-variable and marginal properties of the dataset170

to be corrected. In the rest of the paper, most results are presented for Winter only, but analyses for the other seasons are given

as supplementary materials when meaningful. Figure “X” of the supplementary materials will be referred to as Figure SM“X”

in the following.
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4.1 Temporal correlations: are they improved?

Here, we first look at the ability of R2D2 to reproduce the short-term temporal dependencies of the conditioning dimensions,175

through the order 1 autocorrelation ρ, corresponding to the coefficient of a first-order Auto-Regressive model (AR1).

4.1.1 Temperature temporal correlation

For Winter temperature (Figure 1), the reference dataset shows high AR1 coefficients for the whole region of interest (ρ(AR1)>

0.7). The IPSL dataset and the BC1D dataset also exhibit this characteristic, indicating that the initial model simulations are

consistent with the reference. The root mean square error (RMSE) between the AR1 coefficients of the reference dataset, the180

IPSL dataset or the BC1D dataset is around 0.04. Slight differences can be observed, for instance in Italy and Spain where the

ρ values are slightly lower than from the reference dataset.

For R.1.1.0 (conditioning dimension is temperature in Paris, panel 1(d)), the AR1 coefficient of the conditioning dimen-

sion from the univariate correction is close to that from the reference data. After the R.1.1.0 correction, the sites whose the

temperature autocorrelations are similar to those in the reference are located around Paris. The farther the points are from185

Paris, the less the R2D2 correction is able to reproduce the AR1 coefficients observed in the reference. This is explained by

two factors. First, the conditioning dimension in the reference and in BC1D are similar in terms of AR1 coefficients. Second,

in the reference dataset, there is a strong correlation between the conditioning dimension (the temperature in Paris) and the

temperature at sites that are geographically close. Indeed, in R2D2, at each time step we recopy the rank association observed

in the reference dataset, given the rank of the conditioning variable in the BC1D dataset. Hence, for a site close to Paris, the190

multivariate correction will alter the temperature rank sequence of the reference dataset to make it consistent with the rank

sequence of the conditioning dimension in the BC1D dataset. In this case, since temperature in Paris in the BC1D dataset

possesses temporal properties similar to the references and because of a strong spatial dependence around Paris, the temporal

properties of temperature at a site close to Paris will be, after correction, consistent with the temporal properties of the temper-

ature in Paris in the BC1D dataset and, thus, by transitivity, consistent with the temporal properties of the temperature in Paris195

in the reference dataset. In the following, we will refer to this phenomenon as the “transitivity effect”. Note that variables that

are independent of (or only weakly correlated to) the conditioning dimension in the reference dataset have their ranks altered

as well but not necessarily in a meaningful way. Indeed, for independent or weakly correlated variables, the rearrangement

of the rank sequence is equivalent to a random permutation. Hence, to maximise the transitivity effect, it is needed to select

conditioning variables (i) that have similar temporal properties in the reference and in the simulations to be corrected and (ii)200

that, in the reference dataset, show strong dependencies with the other variables (i.e., site x climate variable) that we want to

correct. Based on figure 1(d), it is clear that it is not the case for the temperature in Paris, as already found by Vrac (2018).

However, when increasing the number of sites (R.5.1.0 and R.100.1.0, resp. Figures 1(e-f)) in the conditioning dimension,

an amplification of the transitivity effect is visible: the areas where the AR1 coefficients are well reproduced have expanded

and are located close to the conditioning sites. Indeed, the mean daily temperature is a relatively smooth signal over this large205

region and the AR1 coefficients are well represented by the simulations.
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Adding precipitation in the conditioning dimension (R.1.2.0, R.5.2.0 and R.100.2.0, respectively figures 1(g) to 1(i)), de-

grades the AR1 properties compared to having only temperature as conditioning dimensions. It may come from the fact that

temperature and precipitation may not be strongly dependent and that conditioning on precipitation to find the value of tem-

peratures for points in the neighbourhood of conditioning sites introduces more noise than signal.210

When using lags in the conditioning dimensions, all configurations with lags give similar results in terms of RMSE computed

on the AR1 coefficient (RMSE = 0.11) and perform generally better than the configurations without lags. This could be expected

since, in this case, short sequences of ranks in the reference dataset are resampled in the R2D2 corrected dataset. Hence, it

mechanically improves the agreement between the reference dataset and the R2D2 corrected dataset in terms of short-term

temporal dependence. This mechanism is the essence of the R2D2 philosophy, where we recopy, in the multivariate corrected215

dataset, the rank association that is given by the conditioning dimensions. In the following, we will refer to this mechanism as

the “copula effect”.

Moreover, the configurations using more sites (R.100.1.1 and R.100.2.1) give slightly better results. The spatial variations of

the AR1 coefficients are qualitatively better respected, with lower values of autocorrelation in Spain, UK and Libya compared

to the rest of the map. Quantitatively, however, there is a negative bias of about -0.1 on average in terms of AR1 coefficients220

compared to the reference dataset.

In the end, as the initial temperature simulations have AR1 coefficients similar to those from the references, the IPSL and

BC1D simulations show the best temporal properties (Best R2D2 RMSE = 0.1, BC1D RMSE = 0.04). In terms of temporal

correlation, R.1.1.0 (i.e., initial R2D2 method) and R.2.1.0 give the worst results with only sensible values of the AR1 coeffi-

cient around the Paris area. However, the use of a multivariate conditioning dimension and overall the use of a rank sequence225

into the conditioning dimensions strongly improve the capability of R2D2 to account for temporal dependence features of the

temperature variable. Indeed, the best R2D2 results are clearly obtained for configurations accounting for lags.

4.1.2 Precipitation temporal correlation

For Winter precipitation (Figure 2), the reference dataset exhibits AR1 coefficients with spatial structures smaller than those

for temperature. Globally, the model roughly reproduces the spatial distribution of the AR1 coefficients (IPSL RMSE = 0.09)230

but clearly lacks spatial resolution. The BC1D results exhibit finer spatial structures, for instance in the northern coastline of

Scandinavia. However, the BC1D AR1 coefficients are not as good as hose from the IPSL dataset (BC1D RMSE = 0.12). For

both IPSL and BC1D, the AR1 coefficients are higher than those for the references in Spain, on the coasts of North Africa

and on the northern coasts of Scandinavia. The agreement between the reference data and the raw simulations in terms of AR1

coefficients is not as good for precipitation as for temperature.235

When applying R.1.1.0 – the configuration of R2D2 with the temperature in Paris as univariate conditioning dimension

without lag – the AR1 coefficient is not correctly reconstructed. In most areas, the AR1 coefficient is close to zero except

in Belgium, Netherlands and North Western Germany where the AR1 coefficient is positive but still negatively biased. This

probably reveals a rather weak correlation between the temperature in Paris and the precipitation in the surrounding area. With

R.5.1.0, which adds Madrid, Stockholm, Rome and Warsaw as conditioning sites, the precipitation autocorrelation is better240
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reconstructed around the added conditioning sites. The effect is notably stronger around Warsaw and Stockholm, where the

correlation between temperature and precipitation is stronger than in Rome and in Madrid (in general, stronger correlations are

observed in Northern Eastern Europe in Winter, not shown). With R.100.1.0, using 100 conditioning sites, the AR1 coefficient

reconstruction is improved over all Europe but is still relatively far from the reference.

Adding precipitation in the conditioning dimensions helps improving the precipitation AR1 coefficient since it is likely245

that the correlation between precipitation in two close sites is stronger than the correlation between temperature in one site

and precipitation in the other site. With 100 conditioning sites, geographical features present in the reference dataset start

to be visible, for instance, higher AR1 coefficients on the coasts of North Africa and on the northern coasts of Scandinavia.

Nevertheless, the order 1 autocorrelations are still biased negatively with respect to the reference dataset. In terms of RMSE,

R.1.100.0, performs slightly better than the BC1D dataset (RMSE(BC1D) = 0.12; RMSE(R.1.100.0) = 0.1) and is on the same250

level as the raw IPSL simulations (RSME = 0.09), although spatial structures are quite different. The transitivity effect is also

limited by the fact that temporal properties of the references and of the BC1D dataset are not so similar. For instance, the

AR1 coefficients tend to be lower in the BC1D dataset, both for temperature and precipitation. Such differences necessarily

minimise the transitivity effect.

As for the temperature, the configurations of R2D2 using lags in the conditioning dimensions perform better (RMSE =255

0.07), with performances relatively independent on the number of conditioning sites or on the type of climate conditioning

dimensions. In this case, those configurations of R2D2 provide an improvement in terms of RMSE compared to the raw IPSL

simulations. Still, the AR1 coefficients are biased negatively compared to the reference dataset: The order 1 autocorrelations

are globally not as high as in the WFDEI reanalyses.

Hence, depending on the choice of the conditioning dimensions, R2D2 can partially recover temporal properties of the260

reference dataset, especially when conditioning by lagged information via rank sequences. It is however hard for R2D2 to

reconstruct the temporal properties perfectly or even do better than the raw IPSL dataset or the BC1D dataset for temperature,

a variable whose the temporality is already well represented in the model simulations. The improvement brought by R2D2

is more pronounced for precipitation temporal properties: including precipitation itself, or more conditioning sites, or lagged

ranks into the conditioning dimension, provides autocorrelation values and structures more similar to the reference ones than265

the other datasets do (e.g., raw or BC1D simulations, initial R2D2 configuration R.1.1.0).

Generally, as seen in this sub-section, although the proposed extensions clearly improve the initial R2D2 method in terms

of temporal correlations, the latter can present some underestimation of the reference temporality, both for temperature and

precipitation. This could be linked to an inhomogeneous sampling of the rank associations that are taken from the reference

dataset. This is thus investigated in the next sub-section 4.2.270

4.2 Reference time sampling & Model chronology agreement

When the conditioning dimension is univariate, continuous, with unique ranks (i.e., no repetitions of values) and belongs to the

variables to be corrected, it is the only variable (from the BC1D dataset) that the R2D2 resampling scheme does not modify.

Therefore, in this case, if the number of days is the same in the reference and model dataset, each time step is sampled exactly
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once and they are uniformly selected. Hence, in this specific case, R2D2 reproduces exactly the inter-sites and intervariable275

empirical copula of the reference, but not the temporal dependencies of the data.

However, when the conditioning has a dimension equal or greater than 2, there is no guarantee that the exact same rank

associations exist in the reference dataset. Indeed, the higher the dimension of the conditioning, the less probable it is to find

the exact rank association in the reference and in the BC1D dataset. This can come from either (i) a sampling issue: the higher

the dimension, the more points are needed to uniformly sample the space, or (ii) from biases in the dependence structure280

(biases in the rank associations) of the conditioning dimension in the dataset to be corrected. In this case, R2D2 uses the

rank associations of the reference dataset that is the closest in terms of Euclidean distance. Hence, the rank association of the

conditioning dimension in the resulting R2D2 dataset can be different from that of the BC1D dataset. One consequence is that

some time steps (i.e., days in our case) can be resampled several times, while others might not be sampled at all. This can

obviously have consequences on the properties (marginal, inter-sites, spatial, temporal.) of the multivariate corrections.285

Therefore, we now analyse the distributions of the time steps that have been selected, since it is an indicator of potential

biases introduced by the analogue-resampling scheme in R2D2.

To reproduce exactly the empirical copula of the reference dataset, each time has to be selected only once. The more uneven

the distribution of selected time steps, the more likely it is that the correction has modified the frequency of some situations

with respect to the reference dataset. However, there is not a direct relationship between the unevenness of the distributions290

and the biases introduced in the correction. For instance, if some rank associations do not appear in the correction, they could

have been substituted by a very similar association. In this case the bias introduced would be very small.

The distributions of time steps selected in the reference dataset in January by the different configurations of R2D2 are shown

in Figure 3 (the distributions for April, July and October are provided in Figures SM7-9). As expected, R.1.1.0 presents a

uniform histogram, since it uses a univariate conditioning that permits the sampling of the whole reference time steps. However,295

this is not the case for the other configurations of R2D2, which all have dimensions of the conditioning equal or greater than 2

(see Table 1). For the configurations of R2D2 with only temperature as conditioning dimensions and without time lags (R.5.1.0,

R.100.1.0), the sampling is quite uniform. This suggests that the spatial properties of the temperature are quite similar between

the reference dataset and the BC1D dataset. When adding the precipitation as conditioning dimensions without time lags

(R.2.1.0, R.2.5.0, R.2.100.0), the histograms are slightly less uniform. This indicates that there can be discrepancies between300

the references and the BC1D dataset for the spatial dependence of precipitation or the dependence between temperature and

precipitation. Finally, When adding time lags in the conditioning dimensions, both for temperature and precipitation, (R.1.1.0,

R.1.5.0, R.1.100.0, R.2.1.0, R.2.5.0, R.2.100.0), the distributions of selected times appear also to be less uniform. This is

especially true, for R.2.5.0, where we observe a trough in the distribution between days 600 and 700. It indicates that the

modelled rank sequences in this period, rarely appear in the BC1D dataset.305

Those elements can help us to interpret the performances of the different configurations of R2D2 with respect to the recon-

struction of temporal, spatial and marginal properties of the temperature and precipitation fields.
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Moreover, in order to see how much the different R2D2 configurations change the temporal structures of the original raw

simulations, for all sites and climate variables, we have computed, the correlation between the ranks of the initial raw simula-310

tions and the ranks of the multivariate corrected time series. The closer the correlation is to 1, the less R2D2 has modified the

temporal structures of the raw simulations. The correlation coefficients for the different sites in Winter are shown in Figures 4

for temperature and 5 for precipitation. The other seasons are shown in Figures SM10-15 of the supplementary materials. By

construction, the CDF-t BC1D mostly conserves the ranks of the raw simulations.

For temperature (Fig. 4), we see that the time series of ranks have been modified substantially by R.1.1.0 (panel (b)). When315

the number of geographical sites increases (R.5.1.0 and R.100.1.0, panels (c-d)), we observe the transitive effect and the rank

times series are more correlated to those from raw simulations. It is made possible because the variations of temperature are

spatially smooth and because the references and BC1D data seem to have similar temperature temporal properties.

The transitivity effect is also seen when precipitation is added as a conditioning dimension (R.1.2.0, R.5.2.0, R.100.2.0,

panels (e-g)) or when time lags are added (R.1.1.1, R.5.1.1, R.100.1.1, R.1.2.1, R.5.2.1, R.100.2.1, panels (h-m)). However,320

fewer changes are made in the rank time-series when the number of conditioning sites increases. However, for those versions of

R2D2 with a high number of conditioning sites, the resulting rank time series are slightly more modified (i.e., rank correlation

further away from 1) than with just the temperature as conditioning dimension. It may come from the fact that the higher the

dimension of the conditioning, the more likely the rank sequence of the conditioning dimension has to be modified.

325

For precipitation (Fig. 5), similar observations can be made. However, the changes in the ranks time series are larger than for

temperature. It can be partially explained by the fact that the transitivity effect is weaker for precipitation. Indeed, precipitation

events occur at local scale and with a spatial correlation radius smaller than for temperature.

Globally, due to the transitivity effect, sites strongly correlated with the conditioning dimension in the reference dataset have330

their rank sequences mostly conserved after the correction if the conditioning dimension has similar temporal properties in the

reference and the model. As a consequence, adding more sites in the conditioning dimension generally leads to more regions

that mostly preserve the rank sequences of the model. However, to some extent, this effect can be counteracted by the fact that,

as the dimension of the conditioning grows (e.g., adding rank lags in the conditioning), it becomes harder to find the exact

rank associations in the reference data. It leads to alterations in the rank sequences for the conditioning dimension and for the335

sites that are correlated with it, and finally to a potential decrease of the rank correlation between the raw simulations and their

corrections.

4.3 Marginal, spatial and intervariable evaluations

As seen previously, some of the proposed R2D2 extensions allow to adjust temporal dependence structure. However, as the

initial R2D2 method was designed to bias correct multi-sites and intervariable dependencies in addition to marginal distribution,340

one can wonder how the temporal structure improvements – as well as the time sampling features – made by the R2D2

11

https://doi.org/10.5194/gmd-2020-132
Preprint. Discussion started: 30 June 2020
c© Author(s) 2020. CC BY 4.0 License.



extensions impact the corrections performed on the other dependencies, i.e., whether or not they degrade the marginal, spatial

and intervariable properties. This is the purpose of the sub-sections 4.3.1 (marginal), 4.3.2 (intervariable), 4.3.3 (spatial).

4.3.1 Marginal properties

We first check whether the R2D2 correction schemes are able to reconstruct the marginal properties of the reference dataset345

through two statistics: the mean and the standard deviation.

For each season and each gridpoint, biases in mean temperatures have been computed and are shown in Figure 6 as boxplots.

The associated maps are given in Figures SM16-19. For all seasons, there are clear differences between the reference and the

IPSL simulations (1.58oC < RSME < 1.84oC). The best performances are achieved by BC1D (0.08oC < RMSE < 0.2oC),

although some light positive or negative biases may appear on some regions, depending on the season (see Figures SM16-19).350

This strong improvement of CDF-t over the raw simulations was expected as the univariate BC focuses on reconstructing the

marginal distribution of the reference.

R.1.1.0 provides similar performances. Since the conditioning dimension is univariate, R2D2 only performs a permutation

of the ranks in time. It then only corresponds to a time reordering of the BC1D correction and does not affect the marginal

distributions.355

On average, going from 1 conditioning site to 5, with R.5.1.0, increases the biases in mean (0.13oC < RMSE < 0.24oC).

However, using 100 sites (R.100.1.0) is equivalent to 5 in terms of mean (0.13oC < RMSE < 0.22oC). Yet, the degradation

is more visible when adding precipitation as conditioning and when increasing the number of conditioning sites to 100. For

R.100.2.0, the RMSE is between 0.19 and 0.54oC depending on the season, and biases can locally exceed 0.5oC, or even 1oC in

Winter over Eastern Europe for instance (Figure SM16, panel(i)). It can be linked to the fact that for R.100.2.0, the distribution360

of time steps selected is less uniform (Figure 3), hence, modifying the marginal mean values provided by CDF-t.

Similar observations can be made when looking at R2D2 corrections accounting for lags in the conditioning dimension.

Configurations including precipitation have less uniform distributions of selected time steps and have thus higher biases.

The same patterns of biases also occur when looking at the standard deviation of the temperatures (not shown).

For precipitation (Figure 7), the IPSL simulations exhibit important biases for the mean precipitation (0.6 mm/day < RMSE365

< 1.41 mm/day), with a strong South (negative) to North (positive) gradient of biases (Figures SM20-23, panels (b)). As

expected, BC1D greatly reduces the bias in the mean (0.1 mm/d < RMSE < 0.15 mm/d). The effects of R2D2, on the biases in

the precipitation mean is similar to those observed in the biases in the temperature mean. R.1.1.0 configuration provides similar

performances as BC1D. With or without time lags, adding precipitation in the conditioning tends to increase the biases. Using

more conditioning sites amplifies the biases as well.370

Biases in precipitation standard deviation also follow patterns that are similar to biases in precipitation mean. Biases increase

with the numbers of conditioning sites and when precipitation is added.

Generally, for both temperature and precipitation marginal properties, the biases tend to be stronger for R2D2 configurations

that exhibit non-uniform sampling of the time steps selected.
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4.3.2 Inter-variable correlations375

We now evaluate the capability of the different R2D2 configurations to adjust inter-variable dependencies. We first compute the

Pearson correlation between temperature and precipitation for each gridpoint in the corrected dataset. We then compare these

correlation values with them from the references. The results are summarised as boxplots of differences in correlation (Figure

8). The associated maps are given for each season in Figures SM24-27 of the supplementary materials. Note that the Spearman

rank correlation analysis provides similar conclusions, although they are perturbed by the very rare rainfall occurrences over380

North-Africa (not shown), which complicates the analysis of the boxplots. Hence, the Pearson correlation has been preferred.

In the IPSL model and in the BC1D correction, the correlation between temperature and precipitation is weaker than in the

reference dataset.

We expect R.1.1.0 to have the best performances with regards to inter-variable rank correlation. Indeed, it has a univariate

conditioning dimension, implying that the empirical copula between temperature and precipitation of the reference data ob-385

served during the calibration periods is reproduced almost exactly. In practice, in Figure 8, the boxplots for R.1.1.0 are not

exactly 0. It indicates that in the references, the empirical copula between temperature and precipitation is not exactly the same

during the two time periods used alternatively for calibration and validation. However, R.1.1.0 (i.e., the initial R2D2 method)

is the main benchmark of the inter-variable evaluation. Indeed, it was designed to adjust the temperature-precipitation depen-

dence of the raw simulations, which is the case since it strongly improves IPSL and BC1D datasets properties. Then, the similar390

behaviors of the different R2D2 configurations indicate that their T2 vs. PR correlations are also improved and in a similar way.

In other words, for all R2D2 extensions, including those improving the temporal dependence structures (see sub-section 4.1),

the inter-variable correlation is not degraded with respect R.1.1.0 and therefore satisfyingly corrected.

4.3.3 Spatial correlations

Finally, we evaluate the spatial correlation by computing the loading values of the first empirical orthogonal function (EOF)395

obtained from a principal components analysis (PCA) applied on temperature and precipitation separately. For each dataset,

we compare the associated loading values with those obtained for the references. The results for Winter and Summer are

summarised in Figure 9 as boxplots drawn from differences of loading values between the R2D2 corrections and the WFDEI

references. The associated maps are given as supplementary materials in Figures SM28-31.

For both temperature precipitation, and for all seasons, the raw IPSL simulations have loading values well-centred around400

those of WFDEI since the median of the differences is close to 0.

Simply by correcting the marginal distribution, BC1D improves the agreement with the reference dataset. Indeed, EOFs are

computed from the variance-covariance matrix, which is sensitive to the change in the marginal distributions.

In the R2D2 configurations, as already explained, the ranks of the non-conditioning variables are shuffled to match those

in the reference dataset during the calibration period. If the inter-site copula is similar during the calibration and validation405

periods, the R2D2 configurations should improve the spatial correlations compared to BC1D. This is the case for R.1.1.0, as

well as for other configurations, where the median of the difference is close to 0 and where an inter-quartile range of the
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differences is narrower than that for BC1D. Interestingly, the configurations with the largest inter-quartile range are those for

which the sampling of the time steps is less uniform (Figure 3), illustrating again the potential impacts of an uneven sampling.

However, many R2D2 configurations are able to reconstruct spatial properties correctly, at least as well as the initial R2D2410

method (i.e., with a univariate conditioning dimension) that was explicitly designed for it. This is even more visible when

looking at the maps of loading values (Figures SM28-31). Hence, the introduction of additional conditioning information into

R2D2 – needed to improve temporal properties as seen in section 4.1 – does not degrade much the capability of R2D2 to adjust

the spatial dependence structures of the climate simulations.

Spatial correlograms are not shown but clearly indicate similar results.415

5 Conclusions and Discussion

5.1 Conclusions

To fill some needs of the climate change impact community, a multivariate bias correction method (MBC) has been pro-

posed in this study. In addition to marginal properties, this MBC is designed to adjust both the inter-site and inter-variable

dependence structures of climate simulations, and at the same time to improve the temporal properties of the corrections. Our420

approach is based on the previously existing R2D2 method (Vrac, 2018) that relied on a univariate “conditioning dimension”

to sample ranks from a reference dataset and, therefore, reconstruct the copula-based spatial and inter-variable dependencies.

The suggested R2D2 extensions allow resampling ranks given a multivariate conditioning dimension, which could be ranks

of multiple physical variables at a time step t, or ranks from a single physical variable but over a sequence of N time steps

(t− (N − 1), . . . , t), or ranks of multiple physical variables over a sequence of N time steps.425

Several configurations (i.e., different conditioning dimensions including different sites and climate variables, with or without

lagged information) have been applied to correct daily precipitation and temperature simulations over Europe from a single

climate model run, the IPSL-CM5 Earth System Model (Marti et al., 2010; Dufresne et al., 2013), with respect to the WFDEI

data (Weedon et al., 2014) as references. As the initial R2D2 approach by Vrac (2018) was able to properly adjust spatial

and inter-variable structure but not the temporal properties of the simulations, the underlying question of the present study430

was to understand (i) if the proposed multidimensional conditioning in R2D2 improves the temporal aspects of the corrections

and (ii) the impact of this conditional resampling on the adjustment quality of the other (i.e., marginal, spatial, inter-variable)

properties. Hence, the various R2D2 configurations have been evaluated and compared to the raw simulations as well as to

corrections from the univariate BC method CDF-t (e.g., Vrac et al., 2012), first in terms of autocorrelation to characterise

the main temporal aspects, and then in terms of marginal properties, spatial dependences and temperature vs. precipitation435

correlations.

For temporal properties, the main conclusions were that including more information (sites and/or lagged ranks) in the con-

ditioning dimension generally improves the reconstruction of the autocorrelation coefficients, both for temperature and pre-

cipitation. However, when the dimension of the conditioning (i.e., the number of variables, sites and lags to condition the

resampling) increases, the distribution of the sampled time steps can be quite different from the uniform one. This has then440
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consequences mostly on the marginals (i.e., univariate properties), where the mean and standard deviation can have stronger

biases for non-uniform sampling. For the other evaluations (spatial and inter-variable properties), although variations in the re-

sults are visible depending on the conditioning dimension used, the main conclusion is that the proposed R2D2 configurations

are relatively stable. Thus, in general, the introduction of additional conditioning information into R2D2 allows improving

temporal properties with a good preservation of the capability of the initial R2D2 to adjust both the spatial and inter-variable445

dependences of the raw simulations.

5.2 Discussion and perspectives

The method suggested in this study is of course upgradeable along different axes.

First, as our goal was not to test the various R2D2 configurations on several climate models, but rather to establish a proof-

of-concept of the R2D2 extension on an illustrative simulations run, only one climate model has been used for application450

and evaluation in the present study. Although we hypothesise that the main general findings obtained on this single model

application will still be valid for other models and simulations, this will need to be confirmed to generalise and refine our

results to more model simulations.

Moreover, the fundamental assumption of R2D2 is that the spatial and inter-variable copulas (i.e., rank association) is sta-

tionary in time, even for future climate projections. This assumption – considering that rank associations act as proxies of455

physics (Vrac, 2018) and that physics does not change in time – is nevertheless debatable since it needs to be verified in further

works. However, it highlights the fact that the conditioning dimension has to be carefully chosen to be relevant, both to drive

(condition) the correction of the properties of interest, but also to translate the potential changes that may happen in future

climate and that would impact the corrections.

More generally, the choice of the conditioning dimension is a key-element of the R2D2 method. Indeed, as seen in this study,460

what is corrected or not by R2D2 is partially driven by the chosen conditioning information. Thus, testing alternative condi-

tioning dimensions could also be of interest for future work, to bring additional physical/geographical information, valuable

to generate proper multivariate corrections. Those alternative conditioning – e.g., including North Atlantic Oscillation (NAO)

or other indices, characterisation of the circulation or other covariates – have nevertheless to be determined according to the

specific region of interest, the climate variables to be corrected, etc. This adaptation of the conditioning to the application is a465

requirement to inject the relevant and suited physical information into R2D2.

Of course, if a “good” conditioning must optimize the R2D2 correction of some statistical properties, it mainly has to

optimize the properties that are the most useful for the users of the corrections. In other words, the choice of the R2D2

configuration has to be tailored for the end-users of the simulations. It is thus very important for the end-users to know

which properties are essential to be corrected in order to design the R2D2 configuration the most appropriate for their specific470

application. Indeed, if many statistical features of the simulations are to be corrected, it is not clear that one single configuration

will be able to correct all properties. For some regions and sets of climate variables, this can happen, but in other cases it might

be needed to prioritize the most essential ones and then choose the associated R2D2 configuration.
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Finally, trying to correct multiple statistical properties at the same time remains a difficult challenge, as adjusting one often

modifies another one. Additionally, one can wonder what is kept from the raw climate simulations if a correction is performed475

to adjust many statistical aspects. Hence, when applying a multivariate bias correction method with a configuration allowing

to modify (explicitly or implicitly) several properties, a compromise has always to be searched, in order to balance, on the one

hand, the level of correction needed to make the simulations useful for the application of interest, and, on the other hand, the

climate model signal preserved by the applied correction method. This is the only way to make the (M)BC useful in practice

and physically reliable.480

Code and data availability. The R2D2 code (Vrac and Thao, 2020), specifically developed for this study and used to adjust the depen-

dence structure of the 1d-bias correction data, is available as an R package “R2D2” under the CeCILL licence, and is downloadable at

https://doi.org/10.5281/zenodo.3786848. This package includes the source code, example data and a user manual. The CDF-t code applied

to perform univariate bias correction has been taken from https://cran.r-project.org/web/packages/CDFt/index.html. The IPSL-CM5A-MR

model data simulations as part of the CMIP5 climate model simulations can be downloaded through the Earth System Grid Federation por-485

tals. Instructions to access the data are available here: https://pcmdi.llnl.gov/mips/cmip5/data-access-getting-started.html The WFDEI data

used as reference in this study can be accessed following the instructions described in Weedon et al. (2014) or in the following web-page

http://www.eu-watch.org/data_availability.
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Identification name conditioning dimensions lags accounted for dimension of ref. var.

R.1.1.0 Temperature in the Paris gridpoint No (Block-A=1; Block-K=1) 1

R.1.2.0 Temp. & Prec. in the Paris gridpoint No (Block-A=1; Block-K=1) 2

R.5.1.0 Temperature in 5 gridpoints No (Block-A=1; Block-K=1) 5

R.5.2.0 Temp. & Prec. in 5 gridpoints No (Block-A=1; Block-K=1) 10

R.100.1.0 Temperature in 100 gridpoints No (Block-A=1; Block-K=1) 100

R.100.2.0 Temp. & Prec. in 100 gridpoints No (Block-A=1; Block-K=1) 200

R.400.1.0 Temperature in 400 gridpoints No (Block-A=1; Block-K=1) 400

R.400.2.0 Temp. & Prec. in 400 gridpoints No (Block-A=1; Block-K=1) 800

R.4167.1.0 Temperature in (all) 4167 gridpoints No (Block-A=1; Block-K=1) 4 167

R.4167.2.0 Temp. & Prec. in(all) 4167 gridpoints No (Block-A=1; Block-K=1) 2 x 4 167 = 8 334

R.1.1.1 Temperature in the Paris gridpoint Yes (Block-A=9; Block-K=7) 1 x 9 = 9

R.1.2.1 Temp. & Prec. in the Paris gridpoint Yes (Block-A=9; Block-K=7) 2 x 9 = 18

R.5.1.1 Temperature in 5 gridpoints Yes (Block-A=9; Block-K=7) 5 x 9 = 45

R.5.2.1 Temp. & Prec. in 5 gridpoints Yes (Block-A=9; Block-K=7) 2 x 5 x 9 = 90

R.100.1.1 Temperature in 100 gridpoints Yes (Block-A=9; Block-K=7) 100 x 9 = 000

R.100.2.1 Temp. & Prec. in 100 gridpoints Yes (Block-A=9; Block-K=7) 2 x 100 x 9 = 1 800

R.400.1.1 Temperature in 400 gridpoints Yes (Block-A=9; Block-K=7) 400 x 9 = 3 600

R.400.2.1 Temp. & Prec. in 400 gridpoints Yes (Block-A=9; Block-K=7) 2 x 400 x 9 = 7 200

R.4167.1.1 Temperature in (all) 4167 gridpoints Yes (Block-A=9; Block-K=7) 4 167 x 9 = 37 503

R.4167.2.1 Temp. & Prec. in (all) 4167 gridpoints Yes (Block-A=9; Block-K=7) 2 x 4 167 x 9 = 75 006

Table 1. Summary of the 20 R2D2 configurations tested. The identification name is organized in the following way: The first number indicates

the number of gridpoints used for the conditioning dimension of R2D2; the second one corresponds to the number of variables considered

at each gridpoint for the conditioning dimension (here, “1” indicates “only temperature”, “2” means “temperature and precipitation”); and

the third number indicates if some lagged (i.e., temporal) information is used by R2D2 (“0” means “no lag used”, “1” means “lags used").

“Block-A" corresponds to the block size (i.e., lags length) used for the analogues search and “Block-K” to the block size that is kept from

the selected analogues of size Block-A.
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Figure 1. Maps of order 1-day temperature autocorrelations for Winter over the 1979-2016 period, for (a) WFDEI, (b) IPSL raw simula-

tions, (c) 1d-bias correction (CDF-t), (d) R.1.1.0, (e) R.5.1.0, (f) R.100.1.0, (g) R.1.2.0, (h) R.5.2.0, (i) R.100.2.0, (j) R.1.1.1, (k) R.5.1.1,

(l) R.100.1.1, (m) R.1.2.1, (n) R.5.2.1, (o) R.100.2.1. In other words, 2nd row: results for temperature as conditioning dimension (for dif-

ferent numbers of locations) and without accounting for lags; 3rd row: same but for temperature and precipitation together as conditioning

dimension; 4th and 5th rows: same as 2nd and 3rd but with lags accounted for. For (b-o), the RMSE value, computed over the whole domain

between WFDEI autocorrelations and those from the model or corrected data, is indicated.21
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Figure 2. Same as Figure 1 but for winter precipitation autocorrelations. Note that, here, precipitation is never used alone as conditioning

dimension.
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Figure 3. Distributions of time steps selected in the reference dataset in January by the different R2D2 configurations. The equivalent

histograms for April, July and October are provided as supplementary materials in Figures SM7-9.
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Figure 4. Maps of spearman (rank) correlations calculated for each gridpoint in winter over 1979-2016 between the initial climate model

temperature simulations and their corrections by (a) 1d-BC, (b) R.1.1.0,(c) R.5.1.0, (d) R.100.1.0, (e) R.1.2.0, (f) R.5.2.0, (g) R.100.2.0, (h)

R.1.1.1, (i) R.5.1.1, (j) R.100.1.1, (k) R.1.2.1, (l) R.5.2.1, (m) R.100.2.1. The results for the other season are provided as supplementary

figures.
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Figure 5. Same as Fig. 4 but for precipitation.
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Figure 6. Boxplots of differences in mean temperature per gridpoint with respect to WFDEI (i.e., mean(model or BC) minus mean(WFDEI):

(a) winter, (b) spring, (c) summer, (d) fall. The associated maps are given in Figures SM16-19.
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Figure 7. Same as Figure 6 but for precipitation. The associated maps are given in Figures SM20-23.
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Figure 8. Boxplots of differences in Temperature vs. precipitation Pearson correlations between WFDEI and the different datasets (IPSL,

1d-BC IPSL and the R2D2 configurations) over 1979-2016 in (a) winter, (b) spring, (c) summer and (d) fall. The associated maps are given

for each season as supplementary materials.
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Figure 9. Boxplots of differences in loading values for the first EOF (EOF1) between model or corrected data, and WFDEI (i.e., EOF1(model

or BC) minus EOF1(WFDEI)). Panels (a) and (c) are for temperature, (b) and (d) for precipitation, for winter (a and b) and summer (c and

d). The associated maps are given as supplementary materials.
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